Didunia ini banyak bilangan yang sangat unik dan
menarik, bilangan itu banyak sekali keistimewaannya. Berikut keistimewaan
bilangan :
·
0
Satu-satunya bilangan yang
memiliki semua bilangan sebagai faktornya. Pada bilangan lain, setelah bilangan
yang nilainya setengah dari bilangan tersebut, tidak mungkin ada bilangan lain
yang menjadi faktornya. Tapi semua bilangan adalah faktor dari 0. Karena setiap
bilangan apapun, bila dikalikan dengan 0, maka hasilnya adalah 0.
Contoh: 4 x 0 = 0Satu-satunya bilangan yang tidak mempunyai kelipatan selain dirinya sendiri.
Contoh: 4 x 0 = 0Satu-satunya bilangan yang tidak mempunyai kelipatan selain dirinya sendiri.
·
1
Satu-satunya bilangan
yang mempunyai hanya satu faktor. Setiap bilangan adalah kelipatan dari 1, atau
bisa dikatakan, setiap bilangan memiliki 1 sebagai faktor mereka. Bilangan
berapapun, dipangkatkan dengan angka 0, maka hasilnya 1, dan bila dipangkatkan
1, hasilnya bilangan itu sendiri.
Contoh: 2^0 = 1
2^1 = 2
3^0 = 1 3^1 = 3
3^0 = 1 3^1 = 3
·
2
Pertama dan
satu-satunya bilangan prima yang genap. Bilangan genap lain memiliki 2 sebagai
faktor mereka. Semua bilangan adalah hasil penjumlahan bilangan 2 pangkat
sekian (lihat Sistem Bilangan Binary).
Contoh: 89 = 64 + 16 + 8 + 1 = (2^6) + (2^4) + (2^3) + (2^0)
Contoh: 89 = 64 + 16 + 8 + 1 = (2^6) + (2^4) + (2^3) + (2^0)
·
3
Bilangan prima ganjil pertama,
namun bukan satu-satunya. Semua kelipatan 3, bila angka-angkanya dijumlahkan,
maka hasilnya juga akan merupakan kelipatan 3.
Contoh:
Contoh:
3 x 17 = 51 –> 5 + 1 = 6
3 x 15 = 45 –> 4 + 5 = 9
3 x 15 = 45 –> 4 + 5 = 9
·
4
Pola satuan setiap bilangan
pangkat sekian akan berlipat setiap pangkat kelipatan 4.
Contoh:
Deret bilangan 2^x: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, dst –> pola satuannya 2, 4, 8, 6, lalu 2 lagi.
Deret bilangan 3^x: 3, 9, 27, 81, 243, 729, 2187, 6561…
Hal itu dikarenakan, bilangan genap apapun, bila dikalikan bilangan itu sendiri sebanyak 4 kali, maka satuannya pasti memiliki satuan 6, sementara setiap bilangan genap dikali 6 hasil satuannya adalah bilangan itu sendiri.
Dan setiap bilangan ganjil selain 5, bila dikalikan bilangan itu sendiri sebanyak 4 kali, maka hasilnya pasti memiliki satuan 1, sementara bilangan berapapun bila dikalikan 1 hasilnya adalah bilangan itu sendiri.
Contoh:
Deret bilangan 2^x: 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, dst –> pola satuannya 2, 4, 8, 6, lalu 2 lagi.
Deret bilangan 3^x: 3, 9, 27, 81, 243, 729, 2187, 6561…
Hal itu dikarenakan, bilangan genap apapun, bila dikalikan bilangan itu sendiri sebanyak 4 kali, maka satuannya pasti memiliki satuan 6, sementara setiap bilangan genap dikali 6 hasil satuannya adalah bilangan itu sendiri.
Dan setiap bilangan ganjil selain 5, bila dikalikan bilangan itu sendiri sebanyak 4 kali, maka hasilnya pasti memiliki satuan 1, sementara bilangan berapapun bila dikalikan 1 hasilnya adalah bilangan itu sendiri.
5
Angka 5, bila dikalikan dengan dirinya sendiri, berapa kalipun, satuannya akan selalu 5. Hal itu dikarenakan bilangan ganjil apapun bila dikali 5 maka hasilnya pasti 5.
Angka 5, bila dikalikan dengan dirinya sendiri, berapa kalipun, satuannya akan selalu 5. Hal itu dikarenakan bilangan ganjil apapun bila dikali 5 maka hasilnya pasti 5.
Bilangan genap apapun, bila dikalikan 5, satuannya
pasti 0. Cara termudah untuk menghitung suatu bilangan genap dikali 5 adalah
dengan membagi dua bilangan tersebut dan tinggal tambahkan 0 sebagai satuannya.
Contoh: 8 x 5 –> 8/2 = 4 –> 40
18 x 5 –> 18/2 = 9 –> 90
Contoh: 8 x 5 –> 8/2 = 4 –> 40
18 x 5 –> 18/2 = 9 –> 90
Cara mudah untuk menghitung suatu bilangan ganjil
dikali 5 adalah dengan mengurangi 1 bilangan tersebut, lalu dibagi 2, dan
tambahkan 0 sebagai satuan.
Contoh: 13 x 5 –> 13 – 1 = 12 –> 12/2 = 6 –> 65
Contoh: 13 x 5 –> 13 – 1 = 12 –> 12/2 = 6 –> 65
6
Angka 6, bila dikalikan dengan dirinya sendiri, berapa kalipun, satuannya akan selalu 6. Karena bilangan genap berapapun, bila dikalikan 6, maka hasilnya akan memiliki satuan bilangan itu sendiri. Hal itu dikarenakan fakta tentang angka 5, bahwa setiap bilangan genap dikali 5 satuannya pasti 0.
Angka 6, bila dikalikan dengan dirinya sendiri, berapa kalipun, satuannya akan selalu 6. Karena bilangan genap berapapun, bila dikalikan 6, maka hasilnya akan memiliki satuan bilangan itu sendiri. Hal itu dikarenakan fakta tentang angka 5, bahwa setiap bilangan genap dikali 5 satuannya pasti 0.
7
Satu, dibagi dengan angka 7, atau dengan kata lain 1/7, hasilnya adalah 0,142857142857142857…dst.
Bilangan 142857 yang terus berulang di sebelah kanan koma pada hasil 1 : 7 adalah sebuah bilangan yang unik karena merupakan Kelipatan Persekutuan dari beberapa bilangan prima, yaitu 3, 11, 13, dan 37.
Bila 142857 dipisahkan angka-angkanya menjadi 142 dan 857, kemudian dijumlahkan, maka hasilnya adalah 999.
142 + 857 = 999
Satu, dibagi dengan angka 7, atau dengan kata lain 1/7, hasilnya adalah 0,142857142857142857…dst.
Bilangan 142857 yang terus berulang di sebelah kanan koma pada hasil 1 : 7 adalah sebuah bilangan yang unik karena merupakan Kelipatan Persekutuan dari beberapa bilangan prima, yaitu 3, 11, 13, dan 37.
Bila 142857 dipisahkan angka-angkanya menjadi 142 dan 857, kemudian dijumlahkan, maka hasilnya adalah 999.
142 + 857 = 999
Setiap bilangan yang bukan kelipatan 7 selalu memiliki
angka 142857 yang berulang di belakang koma. Polanya selalu sama, namun yang
membedakan hanya awalannya saja.
Bila n = 7 dan kelipatannya, maka:
(n+1) /7 = …,142857
(n+2) /7 = …,285714
(n+3) /7 = …,428571
(n+4) /7 = …,571428
(n+5) /7 = …,714285
(n+6) /7 = …,857142
Bila n = 7 dan kelipatannya, maka:
(n+1) /7 = …,142857
(n+2) /7 = …,285714
(n+3) /7 = …,428571
(n+4) /7 = …,571428
(n+5) /7 = …,714285
(n+6) /7 = …,857142
8
1 : 8 = 0,125 –> 1 + 2 + 5 = 8
1 : 8 = 0,125 –> 1 + 2 + 5 = 8
9
Bilangan berapapun, bila dikalikan 9, maka angka-angkanya bila dijumlahkan hasilnya samadengan 9.
Contoh: 13 x 9 = 117 –> 1 + 1 + 7 = 9
Bilangan berapapun, bila dikalikan 9, maka angka-angkanya bila dijumlahkan hasilnya samadengan 9.
Contoh: 13 x 9 = 117 –> 1 + 1 + 7 = 9
Tidak ada komentar:
Posting Komentar